O(W3)

Acta Cryst. (1996). C52, 434-436

Hexa(*para*-phénolammonium) cyclo-Hexaphosphate Octahydrate

EL HASSANE SOUMHI ET TAHAR JOUINI

Département de Chimie, Faculté des Sciences, Campus Universitaire, 1060 Tunis, Tunisie

(Reçu le 24 mai 1995, accepté le 18 août 1995)

Abstract

Hexakis(*p*-hydroxyanilinium) *cyclo*-hexaphosphate octahydrate, $6C_6H_8NO^+$. $P_6O_{18}^{6-}$. $8H_2O$, contains $P_6O_{18}^{6-}$ anions connected by hydrogen bonds to water molecules and organic cations, forming a three-dimensional network. The inorganic rings are located around inversion centres.

Commentaire

Cinq structures de cyclohexaphosphates organiques sont actuellement connues: $[NH_3(CH_2)_2NH_3]_3P_6O_{18},2H_2O$ et $(HO-NH_3)_6P_6O_{18},4H_2O$ (Durif & Averbuch-Pouchot, 1989, 1990), $(C_2H_5NH_3)_6P_6O_{18},4H_2O$ et $(N_2H_5)_2$ - $(N_2H_6)_2P_6O_{18}$ (Averbuch-Pouchot & Durif, 1991*a*) et $[NH_3(CH_2)_2NH_2(CH_2)_2NH_3]_2P_6O_{18},2H_2O$ (Gharbi, Jouini & Durif, 1995). Elles font toutes intervenir des bases aliphatiques. Nous décrivons dans ce travail la préparation et l'étude cristalline d'un nouveau cyclohexaphosphate à base de paraphénolamine, (I).

$$(HO - (I))^{+} (HO - (I))^{+} (HO$$

Il s'agit d'une structure en couches alternées de groupements inorganiques et de molécules d'eau d'une part et de groupements organiques d'autre part, parallèlement au plan $(10\overline{1})$.

Les molécules d'eau sont liées entre elles par paires et viennent s'intercaler entre les anions phosphoriques. Chaque paire exerce une liaison hydrogène avec un oxygène externe du cycle P_6O_{18} et deux liaisons avec les oxygènes des groupements hydroxy des cycles benzéniques.

L'anion $(P_6O_{18})^{6-}$ est centrosymétrique. Il est construit à partir de trois tétraèdres PO₄ indépendants. Sa géométrie locale est analogue aux anions cyclohexaphosphates connus. Il présente des distorsions pour les valeurs des d'angles P—P—P [91,91 (3) à 109,30 (4)°], comportement commun à tous les cycles de symétrie interne $P\overline{1}$ (Averbuch-Pouchot & Durif, 1991b).

Fig. 1. Représentation ORTEPII (Johnson, 1976) de l'unité

O(L13)

 $O(W_2)$

O(W1)

ig. 1. Représentation ORTEP11 (Johnson, 1976) de l'unité asymétrique. Les ellipsoïdes thermiques correspondent à 50% de probabilité. Les atomes H sont représentés par des petits cercles de diamètres arbitraires.

L'arrangement atomique renferme trois cations organiques $(HOC_6H_4NH_3)^+$ indépendants, dont les principales caractéristiques géométriques sont similaires à celles du même cation associé aux anions $(H_2PO_4)^-$ et $(H_2P_2O_7)^{2-}$ (Soumhi, Driss & Jouini, 1994; Soumhi & Jouini, 1995).

Les groupements organiques ne sont pas directement liés entre eux. Leurs substituants, en position para, leurs

Fig. 2. Projection de la structure selon l'axe b.

permettent de former des liaisons avec les deux couches inorganiques entre lesquelles ils sont intercalés. Il en résulte que la cohésion de la structure est assurée par un système tridimensionnel de liaisons hydrogène.

L'examen des vingt liaisons hydrogène que contient la structure, montre que l'ensemble des distances $N(O) \cdots O$ varient entre 2,619(3) et 3,056(4) Å. En se basant sur le critère habituel des distances (Blessing, 1986; Brown, 1976), on peut mettre en évidence quatre liaisons hydrogène fortes, dont trois sont de type O—H···O: O1—H(O1)···O11, O2—H(O2)···O12 et O(W3)—H1W3···O(W4), de valeurs respectives 2,619 (3), 2,716 (3) et 2,721 (4) Å, et une de type N- $H \cdots O$: N1—H1N1 \cdots O13 de valeur 2,671 (3) Å. Les seize autres liaisons sont faibles.

Partie expérimentale

L'acide cyclohexaphosphorique est préparé par passage d'une solution concentrée de cyclohexaphosphate de lithium Li₆P₆O₁₈ (Schülke & Kayser, 1985) à travers une colonne de résine échangeuse d'ions de type Amberlite IR 120. Il est rapidement neutralisé par une solution de paraphénolamine. Le mélange est ensuite filtré et abandonné à la température ambiante. Les cristaux obtenus, au bout de trois jours, sont en forme de parallélipipèdes incolores.

Données cristallines

Collection des deux

 $6C_6H_8NO^+, P_6O_{18}^{6-}, 8H_2O$ Mo $K\alpha$ radiation $M_r = 1278,75$ $\lambda = 0,71069 \text{ Å}$ Monoclinique Paramètres de la maille à $P2_1/n$ l'aide de 24 réflexions a = 14,130 (3) Å $\theta = 12 - 14^{\circ}$ $\mu = 0,297 \text{ mm}^{-1}$ b = 13,071 (6) Å T = 293 (2) Kc = 14,831 (3) Å $\beta = 90,33 (2)^{\circ}$ Parallélipipède $V = 2739(1) \text{ Å}^3$ $0,58 \times 0,40 \times 0,14$ mm Z = 2Incolore $D_x = 1,550 \text{ Mg m}^{-3}$

Conection des données	
Diffractomètre CAD-4	$R_{\rm int} = 0.0140$
Balayage ω	$\theta_{\rm max} = 24,98^{\circ}$
Pas de correction	$h = -16 \rightarrow 16$
d'absorption	$k = 0 \rightarrow 15$
5010 réflexions mesurées	$l = 0 \rightarrow 17$
4809 réflexions	1 réflexion de référence
indépendantes	fréquence: 120 min
3899 réflexions observées	variation d'intensité:
$[I > 2\sigma(I)]$	0,42%

Affinement

Affinement à partir des F^2 $R[F^2 > 2\sigma(F^2)] = 0.0358$ $wR(F^2) = 0.1114$ S = 1,2314809 réflexions

 $\Delta \rho_{\rm max} = 0.310 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0,376 \ {\rm e} \ {\rm \AA}^{-3}$ Correction d'extinction: SHELXL93 (Sheldrick. 1993)

490 paramètres	Coefficient d'extinction:
Tous les paramètres des	0,0086 (6)
atomes d'hydrogène	Facteurs de diffusion des
affinés	International Tables for
$w = 1/[\sigma^2(F_o^2) + 1,6389P]$	Crystallography (1992,
où $P = (F_o^2 + 2F_c^2)/3$	Tome C, Tableaux 4.2.6.8
$(\Delta/\sigma)_{\rm max} = -0.067$	et 6.1.1.4)

Tableau 1. Coordonnées atomiques et facteurs d'agitation thermique isotrope équivalents $(Å^2)$

$$U_{\text{éq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	Ζ	Uéo
P1	0,49849 (5)	0,19528 (5)	0,48391 (5)	0,0252 (2)
P2	0,32166 (5)	-0,09765 (5)	0,57054 (5)	0,0243 (2
P3	0,42172 (5)	0,08730 (5)	0,63674 (5)	0,0247 (2)
011	0,4907 (1)	0,2891 (2)	0,5390(1)	0,0385 (5)
021	0,4688 (1)	0,1962 (2)	0,3879(1)	0.0335 (5)
012	0,2779 (1)	-0,1772 (1)	0,6283 (1)	0,0335 (5)
022	0,2600(1)	-0,0331 (2)	0,5130(1)	0,0340 (5)
013	0,5129 (1)	0,0878 (2)	0,6855 (1)	0.0362 (5)
O23	0,3447 (1)	0,1541 (2)	0,6693 (1)	0.0351 (5)
O(L12)	0,6042(1)	0,1513 (2)	0,4949(1)	0.0332 (5)
O(L13)	0,4379 (1)	0,1058(1)	0,5305(1)	0.0278 (4)
O(L23)	0,3867(1)	-0,0293 (1)	0,6342 (1)	0.0306 (5)
O(W1)	0,4004 (2)	0,5255 (2)	0,6344 (2)	0.0555 (7)
O(W2)	0,1537 (2)	0,1340 (2)	0,7103 (2)	0.0502 (6)
O(W3)	0,3041 (2)	-0,0424(3)	0.8326(2)	0.0558 (7)
O(W4)	0,2850 (3)	0,3442 (2)	0.5396 (2)	0.0630 (8)
01	0,0781 (2)	0,0377 (2)	0.0703 (2)	0.0456 (6)
N1	0,3411 (2)	0,0345 (2)	0.3520 (2)	0.0336 (6)
C11	0,2720 (2)	0,0371 (2)	0.2777 (2)	0.0295 (6)
C21	0,2397 (2)	0,1298 (2)	0.2464 (2)	0.0348 (7)
C31	0,1748 (2)	0,1314 (2)	0,1763 (2)	0.0366 (7)
C41	0,1424 (2)	0,0406 (2)	0.1398 (2)	0.0340 (7)
C51	0,1745 (3)	-0,0521(3)	0.1732 (2)	0.0468 (9)
C61	0,2400 (2)	-0,0538 (3)	0.2430 (2)	0.0436 (8)
02	0,2148 (2)	0,6445 (2)	0.5557 (2)	0.0482 (6)
N2	-0,0565 (2)	0,6819 (2)	0.2809 (2)	0.0369 (6)
C12	0,0165 (2)	0,6736 (2)	0.3515 (2)	0.0337 (7)
C22	0,0574 (2)	0,7602 (2)	0.3865 (2)	0.0390 (7)
C32	0,1244 (2)	0.7525 (2)	0.4548 (2)	0.0424 (8)
C42	0,1501 (2)	0.6576 (2)	0.4872 (2)	0.0351 (7)
C52	0,1095 (3)	0.5705 (3)	0.4506 (2)	0,0440 (8)
C62	0,0435 (2)	0,5784 (3)	0.3825 (2)	0.0435 (8)
03	0.6861 (2)	0.3408 (2)	0.9943 (2)	0.0501 (6)
N3	0,3766 (2)	0.3425 (2)	0.7574 (2)	0.0340 (6)
C13	0.4585 (2)	0.3425 (2)	0.8193 (2)	0.0296 (6)
C23	0,4877 (2)	0.4333 (2)	0.8576 (2)	0.0408 (8)
C33	0,5639 (2)	0,4340 (2)	0.9165 (2)	0.0412 (8)
C43	0,6097 (2)	0.3444 (2)	0.9375 (2)	0.0348 (7)
C53	0,5788 (2)	0,2530 (3)	0.8998 (2)	0.0411 (8)
		,	-,	-,-,-,(0)

Tableau 2. Paramètres géométriques (Å, °)

P1—011	1,478 (2)	C31-C41	1,382 (4)
P1	1,482 (2)	C41—C51	1,384 (4)
P1—O(L13)	1,607 (2)	C51-C61	1,385 (4)
P1—O(L12)	1,608 (2)	O2C42	1,374 (4)
P2—022	1,480 (2)	N2-C12	1,470 (4)
P2-012	1,484 (2)	C12—C22	1,372 (4)
P2-O(L23)	1,589 (2)	C12-C62	1,380 (5)
$P2-O(L12^{i})$	1,594 (2)	C22—C32	1,385 (4)
P3013	1,474 (2)	C32—C42	1,379 (4)
P3O23	1,478 (2)	C42—C52	1,384 (4)
P3—O(L23)	1,603 (2)	C52—C62	1,375 (5)
P3O(L13)	1,612 (2)	O3—C43	1,367 (4)
P1P3	2,887 (1)	N3-C13	1,472 (4)
P1P2'	2,960(1)	C13-C63	1,373 (4)
P2P3	2,965 (1)	C13C23	1,378 (4)
01—C41	1,370 (3)	C23-C33	1,383 (4)

N1-C11	1,469 (4)	C33—C43	1,373 (4)
C11-C61	1,370 (4)	C43—C53	1,388 (4)
C11-C21	1,374 (4)	C53—C63	1,379 (4)
C21-C31	1,383 (4)		
011—P1—021	120,1 (1)	C11-C21-C31	119,0 (3)
O11-P1-O(L13)	108,9 (1)	C41-C31-C21	119,9 (3)
O21-P1-O(L13)	105,7 (1)	O1-C41-C31	122,3 (3)
O11—P1—O(L12)	108,2(1)	01-C41-C51	117,4 (3)
O21—P1—O(L12)	111,0(1)	C31-C41-C51	120,3 (3)
O(L13)-P1-O(L12)	101,1(1)	C41-C51-C61	119,9 (3)
O22-P2-O12	119,1 (1)	C11-C61-C51	118,9 (3)
O22-P2-O(L23)	111,0(1)	C22-C12-C62	120,2 (3)
O12-P2-O(L23)	107,0(1)	C22-C12-N2	120,0 (3)
$O22 - P2 - O(L12^{i})$	106,6(1)	C62-C12-N2	119,7 (3)
$O12 - P2 - O(L12^{i})$	108,7 (1)	C12-C22-C32	120,1 (3)
$O(L23) - P2 - O(L12^{i})$	103,3 (1)	C42-C32-C22	119,9 (3)
013-P3-023	118,7(1)	O2-C42-C32	122,9 (3)
O13-P3-O(L23)	106,5 (1)	O2-C42-C52	117,4 (3)
O23-P3-O(L23)	109,9 (1)	C32-C42-C52	119,7 (3)
O13-P3-O(L13)	110,5 (1)	C62-C52-C42	120,3 (3)
O23-P3-O(L13)	109,8 (1)	C52-C62-C12	119,8 (3)
O(L23)-P3-O(L13)	99,6 (1)	C63-C13-C23	120,5 (3)
P2 ⁱ -O(L12)-P1	135,1 (1)	C63-C13-N3	120,1 (3)
P1-O(L13)-P3	127,5 (1)	C23-C13-N3	119,3 (3)
P2-0(L23)-P3	136,5 (1)	C13-C23-C33	119,8 (3)
P3-P1-P2 ⁱ	109,30 (4)	C43-C33-C23	120,1 (3)
P3P2P1 ⁱ	91,91 (3)	O3-C43-C33	122,6 (3)
P1—P3—P2	108,62 (3)	O3-C43-C53	117,7 (3)
C61-C11-C21	122,0 (3)	C33—C43—C53	119,7 (3)
C61-C11-N1	118,5 (3)	C63C53C43	120,2 (3)
C21-C11-N1	119,5 (3)	C13-C63-C53	119,7 (3)
Code de symétrie: (i)	1 - x, -y, 1	— z.	

Tableau 3. Distances et liaisons hydrogène (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O1 - H(O1) \cdot \cdot \cdot O11^{i}$	0,87 (4)	1,76 (4)	2,619 (3)	166 (4)
O2—H(O2)···O12 ⁱⁱ	0,81 (4)	1,92 (4)	2,716 (3)	168 (4)
O3—H(O3)····O22 ⁱⁱⁱ	0,82 (5)	1,92 (5)	2,735 (3)	169 (5)
$O(W1)$ H $1W1 \cdots O1^{iii}$	0,89 (5)	1,94 (5)	2,815 (4)	165 (4)
$O(W1) - H2W1 \cdots O1^{iv}$	0,75 (6)	2,54 (6)	3,056 (4)	128 (5)
O(W2)-H1W2···O23	0,82 (5)	1,97 (5)	2,783 (3)	177 (5)
O(W2)-H2W2···O(W1 ^v)	0,87 (5)	1,96 (5)	2,815 (4)	165 (5)
O(W3)-H1W3···O(W4 ^v)	0,96 (5)	1,77 (6)	2,721 (4)	171 (4)
O(W3)—H2W3···O2 ^v	0,86 (6)	2,14 (6)	2,964 (4)	158 (5)
O(W4)—H1W4···O3 ⁱ	0,74 (5)	2,14 (5)	2,871 (4)	169 (6)
O(W4)—H2W4···O11	0,84 (6)	2,15 (6)	2,994 (4)	173 (6)
N1-H1N1···O13 ^{vi}	0,88 (3)	1,79 (4)	2,671 (3)	176 (3)
N1-H2N1···O22	0,95 (4)	1,85 (4)	2,796 (3)	173 (3)
N1-H3N1···O21	0,96 (4)	1,92 (4)	2,828 (4)	157 (3)
N2—H1N2···O21 ^{iv}	0,94 (4)	1,88 (4)	2,806 (3)	170 (3)
N2—H2N2···O($W2^{vii}$)	0,89 (4)	1,88 (4)	2,774 (4)	177 (3)
$N2-H3N2\cdotsO(W3^{i})$	0,96 (5)	1,86 (5)	2,795 (4)	164 (4)
N3-H1N3···O12 ^{viii}	0,99 (4)	1,82 (4)	2,784 (3)	164 (3)
N3—H2N3···O(W1)	0,89 (4)	2,14 (4)	3,029 (4)	175 (3)
N3-H3N3···O23	0,93 (4)	1,91 (4)	2,824 (4)	167 (3)
Codes de symétrie: (i) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) $x, 1 + y, z$; (iii) $\frac{1}{2} + x, \frac{1}{2} - \frac{1}{2}$				
$y, \frac{1}{2}+z; (iv) \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}$	$-z; (v) \frac{1}{2}$	$x, y - \frac{1}{2}, \frac{3}{2} - $	z; (vi) 1 — .	x, -y, 1-z;
$(vii) -x, 1 - y, 1 - z; (viii) \frac{1}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z.$				

La largeur de balayage est $(0,67 + 1,01tg\theta)^\circ$. Les intensités ont été corrigées des facteurs de Lorentz et de polarisation. La structure a été résolue par les méthodes directes puis affinée par la méthode des moindres carrés.

Collection des données: CAD-4 EXPRESS (Duisenberg, 1992; Macicek & Yordanov, 1992). Affinement des paramètres de la maille: CAD-4 EXPRESS. Réduction des données: MolEN (Fair, 1990). Programme pour la solution de la structure: SHELXS86 (Sheldrick, 1985). Programme pour l'affinement de la structure: SHELXL93 (Sheldrick, 1993). Les dessigns ont été obtenus à l'aide de ORTEPII (Johnson, 1976). Programme pour la préparation du manuscrit: SHELXL93.

Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées des atomes d'hydrogène et des distances et angles ont été déposées au dépôt d'archives de l'UICr (Référence: DU1139). On peut en obtenir des copies en s'adressant à: The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Références

- Averbuch-Pouchot, M. T. & Durif, A. (1991a). Acta Cryst. C47, 1579-1583.
- Averbuch-Pouchot, M. T. & Durif, A. (1991b). Eur. J. Solid State Inorg. Chem. 28, 9-22.
- Blessing, R. H. (1986). Acta Cryst. B42, 613-621.
- Brown, I. D. (1976). Acta Cryst. A32, 24-31.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Durif, A. & Averbuch-Pouchot, M. T. (1989). Acta Cryst. C45, 1884– 1887.
- Durif, A. & Averbuch-Pouchot, M. T. (1990). Acta Cryst. C46, 2026– 2028.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, Les Pays-Bas.
- Gharbi, A., Jouini, A. & Durif, A. (1995). J. Solid State Chem. 114, 42-51.
- Johnson, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- Macicek, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 324-325.
- Schülke, U. & Kayser, R. (1985). Z. Anorg. Chem. 4, 549.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Université de Göttingen, Allemagne.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Université de Göttingen, Allemagne.
- Soumhi, E. H., Driss, A. & Jouini, T. (1994). Mater. Res. Bull. 29, 667-675.
- Soumhi, E. H. & Jouini, T. (1995). Acta Cryst. C51, 1213-1215.

Acta Cryst. (1996). C52, 436-438

Dimethyl 2,2,6,6-Tetramethyl-3,5-dioxo-4-oxaheptanedioate

JAMES E. GRAHAM, RICHARD A. BUNCE AND ELIZABETH M. HOLT*

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA. E-mail: chememh@osucc. bitnet

(Received 1 April 1995; accepted 30 August 1995)

Abstract

The title compound, $C_{12}H_{18}O_7$, crystallizes with the anhydride moiety non-planar and in the *trans,trans* conformation. The stability of this compound suggests that quaternary C atoms attached to carbonyl C atoms have a stabilizing influence on acyclic anhydride compounds.

Comment

While the Cambridge Structural Database (1994) contains more than 200 examples of structures of molecules